@ther Authority

www.EtherAuthority.io
audit@etherauthority.io

SMART
CONTRACT

Security Audit Report

Project: Blue Bird

Website: https://blb.homes
Platform: Binance Smart Chain
Language: Solidity

Date: April 9th, 2022

Table of contents

Introduction

... 4
Project Background ... 4
AU S0P ..t 4
Claimed Smart Contract Featurescooiiiiiii e 5
AUIt SUMMIAIY ot 6
Technical QUICK Stats ..o e 7
Code QUANIRY ... e 8
DOoCUMENTAtION ... 8
USE Of DEPENUENCIES ... e e nenaenes 8
ASIS OVEIVIEW ... 9
Severity DefinitioNS ... 11
AUt FINAINGS oo e 12
@70 o T3 1017 T o 15
(@ 0] 1Y/ =1 1 T To [o] 0T) 16
DISCIAIMEIS ... e 18
Appendix
o Code FIoW Diagramououoiiii s 19
o Shther RESUIS LOGuiiiiii e 20
e Solidity staticanalysis ... 24
® SOININt LiNtEr oo 27

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY
CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH
INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS
CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS
MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE
AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Introduction

EtherAuthority was contracted by the Blue Bird team to perform the Security audit of the
Blue Bird Token smart contract code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the findings regarding
the audit performed on April 9th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background

The Blue Bird contract is a BE20 standard smart contract, having functions like

addLiquidity, swapTokens, calculateTaxFee, setTaxFee, presale, etc.

Audit scope
Name Code Review and Security Analysis Report for Blue
Bird Token Smart Contract
Platform BSC / Solidity
File BuyBackToken.sol
File MD5 Hash 7DD1CFF6428B2BBEGFCFD7485177193C
Online Code Link 0x1cd4c653c8a8775e26cc14ab30a52bc12b3d7fd2
Audit Date April 9th, 2022

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://bscscan.com/address/0x1cd4c653c8a8775e26cc14ab30a52bc12b3d7fd2#code

Claimed Smart Contract Features

Claimed Feature Detail

Our Observation

Tokenomics:
e Name: BLUE BIRD
e Symbol: BLB
e Decimals: 9
e Marketing Fee: 5%
e Maximum Transaction Amount: 47 Billion
e Buy Back Upper Limit Amount: 1 Billion
e Minimum Tokens Before Swap Amount: 9.4
Million
e Total Supply: 47 Billion

YES, This is valid.

Owner authorized wallet can
set some percentage value and
we suggest handling the
private key of that wallet

securely.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Summary

According to the standard audit assessment, Customer's solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

Insecure Poor secured Secure Well-secured

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.

All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 5 low and some very low level issues.

All these issues have been acknowledged.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical
nature of the project. Any owner controlled functions should be executed by the owner with
responsibility. All investors/users are advised to do their due diligence before investing in

the project.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Technical Quick Stats

Main Category Subcategory Result
Contract Solidity version not specified Passed
Programming Solidity version too old Passed
Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed
Function access control lacks management Passed
Critical operation lacks event log
Human/contract checks bypass Passed
Random number generation/use vulnerability N/A
Fallback function misuse Passed
Race condition Passed
Logical vulnerability Passed
Features claimed Passed
Other programming issues
Code Function visibility not explicitly declared Passed
Specification Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed
Unused code Passed
Gas Optimization “Out of Gas” Issue Passed
High consumption ‘for/while’ loop
High consumption ‘storage’ storage Passed
Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed
“Short Address” Attack Passed
“‘Double Spend” Attack Passed

Overall Audit Result:

PASSED

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Code Quality

This audit scope has 1 smart contract file. Smart contract contains Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in Blue Bird Token are part of its logical algorithm. A library is a different type
of smart contract that contains reusable code. Once deployed on the blockchain (only
once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the Blue Bird Token.

The Blue Bird Token team has not provided scenario and unit test scripts, which would

have helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given a Blue Bird Token smart contract code in the form of a BSCScan Web

Link.The hash of that code is mentioned above in the table.
As mentioned above, code parts are not well commented. So it is not easy to quickly
understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website_https://blb.homes which provided rich

information about the project architecture and tokenomics.

Use of Dependencies

As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

https://blb.homes

AS-IS overview

Functions
Sl. Functions Type Observation Conclusion
1 | constructor write Passed No Issue
2 [owner read Passed No Issue
3 | onlyOwner modifier Passed No Issue
4 [renounceOwnership write access only Owner No Issue
5 | transferOwnership write access only Owner No Issue
6 [getUnlockTime read Passed No Issue
7 | getTime read Passed No Issue
8 [lock write access only Owner No Issue
9 | unlock write Regain ownership | Refer Audit
Findings
10 [name read Passed No Issue
11 | symbol read Passed No Issue
12 | decimals read Passed No Issue
13 | totalSupply read Passed No Issue
14 | balanceOf read Passed No Issue
15 | transfer write Passed No Issue
16 | allowance read Passed No Issue
17 | approve write Passed No Issue
18 | transferFrom write Passed No Issue
19 | increaseAllowance write Passed No Issue
20 | decreaseAllowance write Passed No Issue
21 | isExcludedFromReward read Passed No Issue
22 | totalFees read Passed No Issue
23 | minimumTokensBeforeSwapAmo read Passed No Issue
unt
24 | buyBackUpperLimitAmount read Passed No Issue
25 | deliver write Critical operation Refer Audit
lacks event log Findings
26 | reflectionFromToken read Passed No Issue
27 | tokenFromReflection read Passed No Issue
28 | excludeFromReward write access only Owner No Issue
29 | includelnReward external Infinite loops Refer Audit
possibility Findings
30 | approve write Passed No Issue
31 [transfer write Passed No Issue
32 | swapTokens write Division before Refer Audit
multiplication Findings
33 | buyBackTokens write Passed No Issue
34 | swapTokensForEth write Passed No Issue
35 [swapETHForTokens write Passed No Issue
36 | addLiquidity write Passed No Issue
37 | tokenTransfer write Passed No Issue
38 | transferStandard write Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

39 | transferToExcluded write Passed No Issue
40 | transferFromExcluded write Passed No Issue
41 | transferBothExcluded write Passed No Issue
42 | reflectFee write Passed No Issue
43 | getValues read Passed No Issue
44 | getTValues read Passed No Issue
45 | getRValues write Passed No Issue
46 | getRate read Passed No Issue
47 | _getCurrentSupply read Infinite loops Refer Audit
possibility Findings
48 | takeLiquidity write Passed No Issue
49 | calculateTaxFee read Passed No Issue
50 [calculateLiquidityFee read Passed No Issue
51 [removeAllFee write Passed No Issue
52 | restoreAllFee write Passed No Issue
53 | isExcludedFromFee read Passed No Issue
54 | excludeFromFee write access only Owner No Issue
55 | includelnFee write access only Owner No Issue
56 | setTaxFee external | Owner can set fee | Refer Audit
high Findings
57 | setBuybackFee external | Owner can set fee | Refer Audit
high Findings
58 | setMaxTxAmount external | access only Owner No Issue
59 | setMarketingFee external | Owner can set fee | Refer Audit
high, Different error Findings
message for
marketing fee
setting
60 | setNumTokensSellToAddToLiqui | external | access only Owner No Issue
dity
61 | setBuybackUpperLimit external | access only Owner No Issue
62 | setMarketingAddress external | access only Owner No Issue
63 | setSwapAndLiquifyEnabled write access only Owner No Issue
64 | setBuyBackEnabled write access only Owner No Issue
65 | presale external | access only Owner No Issue
66 | transferToAddressETH write Passed No Issue
67 | receive external Passed No Issue

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Severity Definitions

Description

Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.
High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Division before multiplication:

function swapTokens(uint256 contractTokenBalance) private lockTheSwap {
uint2s56 initialBalance = address(this).balance;
swapTokensForeth(contractTokenBalance);
uint2s56 transferredBalance = address(this).balance.sub(initialBalance);

//send to Marketing address

transferToAddressETH(dappbuilderAddress, transferredBalance.div(liquidityFee).mul(dappbuilderFee)’
transferToAddressETH(marketingAddress, transferredBalance.div(liquidityFee).mul(marketingFee.sub(t

Solidity being resource constraint language, dividing any amount and then multiplying will
cause discrepancy in the outcome. Therefore always multiply the amount first and then
divide it.

Resolution: Consider ordering multiplication before division.
Status: Acknowledged
(2) Critical operation lacks event log:

Missing event log for: deliver

Resolution: Write an event log for listed events.

Status: Acknowledged

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

(3) Infinite loops possibility:

In below functions, for loops do not have _excluded length limit, which costs more gas:
e getCurrentSupply

e includelnReward

Resolution: Upper limit should have a certain limit in for loops.
Status:

(4) Regain ownership:

function unlock() public virtual {
require(_previousOwner == msg.sender, "You don't have permission to unlock™);
require(block.timestamp > lockTime , "Contract is locked until 7 days");
emit OwnershipTransferred(_owner, _previousOwner);
_owner = _previousOwner;

The unlock() function can be used to regain ownership after being renounced, if lock() was

previously called.

Resolution: We suggest adding this line _previousOwner= address(0) after _owner =
_previousOwner;
Status:

(5) Owner can set fee high:

setMarketingFee, setTaxFee, setBuybackFee are used to set fees by the owner. But there

is no maximum limit set hence the owner can set any number for fees.

Resolution: We suggest setting some maximum limit for fees.
Status:

Very Low / Informational / Best practices:

(1) Different error message for marketing fee setting:

Validation for marketing fee is done for >= 5. But the error message is not the same at
both places.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Resolution: We suggest setting proper error messages for marketing fee validation.
Status:

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)
only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

e excludeFromReward: Owner can exclude account from reward

e includelnReward: Owner can include account in reward.

e excludeFromFee: Owner can exclude account from fee.

e includelnFee: Owner can include account in fee .

e setTaxFee: Owner is allowed to set tax fee.

e setBuybackFee: Owner is allowed to set buyback fee.

e setMaxTxAmount: Owner can set maximum transaction amount.

e setMarketingFee: Owner can set marketing fee.

e setNumTokensSellToAddToLiquidity: Owner can set number of tokens sold to add to
liquidity swap value.

e setBuybackUpperLimit: Owner can set buyback upper limit values.

e setMarketingAddress: Owner can set marketing wallet address.

e setSwapAndLiquifyEnabled: Owner can set swap and liquify enabled status.

e setBuyBackEnabled: Owner can update the status of the buyback.

e presale: Owner can set presale status.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Conclusion

We were given a contract code. And we have used all possible tests based on given
objects as files. We have not observed any major issues. So, it’s good to go to

production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide
no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static
analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.
The goals of our security audits are to improve the quality of systems we review and aim
for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:

In manually reviewing all of the code, we look for any potential issues with code logic, error
handling, protocol and header parsing, cryptographic errors, and random number
generators. We also watch for areas where more defensive programming could reduce the
risk of future mistakes and speed up future audits. Although our primary focus is on the
in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:

Our audit techniques included manual code analysis, user interface interaction, and
whitebox penetration testing. We look at the project's web site to get a high level
understanding of what functionality the software under review provides. We then meet with
the developers to gain an appreciation of their vision of the software. We install and use
the relevant software, exploring the user interactions and roles. While we do this, we
brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Documenting Results:

We follow a conservative, transparent process for analyzing potential security
vulnerabilities and seeing them through successful remediation. Whenever a potential
issue is discovered, we immediately create an Issue entry for it in this document, even
though we have not yet verified the feasibility and impact of the issue. This process is
conservative because we document our suspicions early even if they are later shown to
not represent exploitable vulnerabilities. We generally follow a process of first documenting
the suspicion with unresolved questions, then confirming the issue through code analysis,
live experimentation, or automated tests. Code analysis is the most tentative, and we
strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take, and finally we
suggest the requirements for remediation engineering for future releases. The mitigation
and remediation recommendations should be scrutinized by the developers and
deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made pubilic.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Appendix

Code Flow Diagram - Blue Bird Token

@ BuyBackToken

Context
IERC20
Ownable

WA\SafeMath for wint256
mAddress for aodress

address dappbuilder Address
ress marketingAdcress

t256 _{FeeTotal
ring _name
tring _symbol
int _decimals
nt256 _taxFes
nt256 _previousTaxFee
nt256 _liquicityFes
Mt256 _previousLiquidityFee
t256 buybackFee
t256 previousBuybackFee
t256 marketingFee
1256 previousMarketingFee
uint dappbuilderFee

Nt256 _maxTxAmourt
nt256 _previousMaxTxAmourt
Lirt256 minimumTokensBeforeSwap
Lint256 buyBackUpperLimit
iUniswap'/2Router02 uniswap'/2Router
© address uniswapV2Pair
< ool inSwapAndLiguity
© bool swap AndLiguifyEnabled
< bool buyBackEnabled

o0dDO0o0DOoOoOODOOODOOOCOOOOODOOOOODO
o

@ &__constructor__()

© Qname()

® Qsymbol()

@ Qudecimals()

@ QotalSupply()

© QbalanceOf()

@ transfer()

@ Qallowance()

@ approve()

@ transferFrom()

@ increaseAllowance()

© decreaseAllowance()

© QisExcludedFromReward()

© QotalFees()

@ QuminimumTokensBeforeSwapAmount()

@ QbuyBackUpperLimitAmount()

@ deliver()

© QreflectionFromToken()

QtokenFromReflection()

excludeFromReward()

includelnReward()

—approve()

_transfer()

swapTokens()

buyBackTokens()

swapTokensForEth()

swapETHForTokens()

addLiquidity()

_tokenTransfer()

_transferStandard()

_transferToExcludec()

_transferFromExcluded()

transferBothExcluded()

_reflectFee()

% _getValuss()

Q_getTValues()

Q_getRValues()

2 _getRate()

& _getCurrentSupply()

_takeLiquidity ()

QcalculateTaxFee()

QcalculateliquidityFee()

removeAlFee()

restore AlFee(

QisExcludedFromFee()

excludeFromFee()

includelnFee()

setTaxFee()

setBuybackFee()

sethiaxTxAmourt()

sethMarketingFee()

sethumTokensSelToAddToliguidity()

setBuybackUpperLimit(y

setharketing Address()

setSwapAnciLiguifyEnablec()

setBuyBackEnabled()

presale()

H transferToAddressETH)
F

EEEENEENEEENEEEEEEEOOO

=
=
-
=
®
®
@
®
®
@
®
®
@
®
®
@
®

@ IUniswapV2Pair

@ IUniswapV 2Factory|

QfesTo()

A fesToSetter()y
QgetPair()
QallPairs()
QallPairsLength()
createPair()
setFeeTo()
setFeeToSetter()

eodod000

for wint256

T
\for address

0000000000000 000000000000D

QAname()

Qsymbol()

Qdecimals()
QtotalSupply)y
QbalanceOf()
Qallowance()

approve()

transfer()

transferFrom()
QDOMAIN_SEPARATOR()
QUPERMIT_TYPEHASH()
Qnonces()

permit(y
QUMINIMUM_LIQUIDITY ()
Qfactory()

Qutokend()

Qutakent ()
QgetReserves()
QpricedCumulativel ast()
Qpricel Cumulativel ast{)
QkLast()

burn()

swap()

skim()

sync()

initialize()

@ IUniswapV2Router02

IUniswapVZRouter01

@ removeLiquidityETHSupportingFeeOnTransferTokens()
@ removeL iquidityETHAthPermitSupportingFeeCn Transfer Tokens()
© swapExactTokensFor TokensSuppertingFesOnTransfer Tokens()
© &swapExactETHForTokensSupportingFeeOnTransTerTokens()
® swapExactTokensForETHSupportingFeeOnTransferTokens()

-I © Cwnahble

Context

(@) serczo (&) saremath @) Acaress
g zt,otlalswgl;r() < Quadd() < QisContract()
[o al ?nce (4] < Asub() & sendvalue()
| ° Cr‘an"s er) < Qmul() < functionCall(y
2 aplaor::veagceo & Qdiv() & functionCallith'alue()
| SR o < Amod() B _functionCallVithalus()

O address _owner
O address _previousOwner
O LintZ56 _lockTime

@ Context

© Q_msgSender
© Q_msgData()

(4]

© __constructor__()
® Qowner()

© renounceOwnership()
@ transferOwnership()
© QgetUnlockTime()

© CQgetTime()

© lack()

@ unlock()

@ IUniswapV 2Router0

A factory()

QNETHI)

addLiquidity(}
SaddLiquidityETH()
removeLiquidity()
removeLicuictyETHO)
remaveLiguicityWithPermit()
removeLicuidityE THWithPermit()
swapExactTokensForTokens()
swapTokensForExactTokens()
& swapExactETHF or Tokens()
swapTokensForExactETHO
swapExactTokensForETH()

& swapETHForExact Tokens()
Qguote()

QgetAmourtOut()
QgetAmounting
QgetAmourtsOut()
Qgstamountsing

(AR NENENRENNENENRENNENEY]

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Slither Results Log

Slither log >> BuyBackToken.sol

INFO:Detectors:
BuyBackT .k r.cll = 255, = er fBL /BackToken.sol#554) shadows:

-H cal-variable-shadowing
INFD Detectors
oke F.-LISTIL tor{string,string,uintd,uint256,uint256,uint256,uint256,address)._ma (BuyBackToken.sol#485) lacks
on
- marketin
BuyBackToken.setMarketingA

INFD.Detectors:
Reentrancy in BuyBackToken._ transfer{address,address,uint256) ({BuyBackToken.sol#653-691):
External call
- swapTokens{c)
- rap) . <actTokensForETHSuppor e0nTrans ferTokens(tokenAmount,®,path, add
timestamp) (BuyBackT

TransferTokens{value: amount}{®
.timestamp.ad
External

. TransferTokens{value: amount}(@ ,de ress,block
Token.
cTt»F tf

Reentrancy in BuyBackToken.transferFrom{ad , 8 ess,uint256) (BuyBackToken.sol#563-5
External calls:
- _transfer(se ,recipient,amount) _(Bu Bc-k'cker
i OnTransferTokens{value:
.timestamp.a
TransferTokens(tokenAmount, @
timestamp)

TransferTokens{value: amount}(8

es[sender][_msg {)].sub(amount,ERC20: transfer amount exceeds allowance

= der] = amount (BuyBackToke 549)
https://gi om/crytic/sli /wiki/Detector-Documentatio 2e cy-vulnerabilities-2

INFD.Detectors:

cy in BuyBackToken._ nsfer({address,a ess,uint256) (BuyBackToken.sol#653-691):

TransferTokens(tokenAmount,

timestamp)

- buyBack

eeOnTransferTokens{value:

.timestamp.a

ee0nTransferTokens{value: amount}{0,pa

.timesta

Reentrancy .constructor{str g,st g . > . int2 ess) (BuyBackToken.sol#485-52

2Router.factory()).cre = ir{address{this), uniswapV2Router .WETH{)}

amount}(@,path,deadAddress ,block.timesta
mp . ad

Reentrancy

a private and confidential document. No part of this document should
be disclosed to third party without prior written perm of EtherAuthority.

Email: audit@EtherAuthority.io

- recipient.transfer{amount) (BuyBackToken.sol#975)
- uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{value: amount}{®,path,deadAddress,block
.timestamp.add({380)) (BuyBackToken.sol#740-745)
Event emitted after the call(s):
- Approval{owner,spender,amount) {BuyBackToken.sol#650)
- _approve(sender,_msgSender(),_allowances[sender][_msgSender{)].sub(amount,ERC20: transfer amount exceeds a
1lowance)) (BuyBackToken.sol#565)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-3
INFO:Detectors:
Ownable.unlock() (BuyBackToken.sol#196-201) uses timestamp for comparisons
Dangerous comparisons:
- reguire{bool,string)(block.timestamp > _lockTime,Contract is locked until 7 days) (BuyBackToken.sol#1938
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#block- tlwestawp
INFO:Detectors:
Address.isContract{address) {BuyBackToken.sol#91-100) uses assembly
- INLINE ASM (BuyBackT oken. sol#98)
Address._functionCallwithvalue(address,bytes,uint256,string) (BuyBackToken.sol#128-145) uses assembly
- INLINE ASM [BuyBack'oken.501#137—149}
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#assembly-usage
INFO:Detectors:
Address._functionCallwithvalue{address,bytes,uint256,string) (BuyBackToken.sol#128-145) 1 - used and should be removed
Address.functionCall{address,bytes) (BuyBackToken.sol#111-113) is never used and should be removed
Address.functionCall{address,bytes,string) {BuyBackToken.sol#115-117) 1is never used and should ba removed
Address.functionCallWithvalue(address,bytes,uint256) {BuyBackToken.sol#119-121) is never used and should be removed
Address.functionCallwithvalue(ress, bthS uint256 stllng, {BuyBackToken.sol#123-126) is never used and should be removed
Address.isContract{address) {BuyBackT oken.sol#91- 1 is never used and should be removed
Address.sendValue(address,uint256) (BuyBackToken.sol#102 is never used and should be removed
BuyBackToken. aijlqu1j1tvlu1nt;5.,u1nt;5t; {BuyBackToken.sol#750-763) 1is never used and should be removed
Context. msgData() ({BuyBackToken.sol#14-17) is 1 id should be rem
SafeMath.mod{uint256,uint256) (BuyBackToken.sol#) i er used and should be removed
SafeMath.mod{uint256,uint256,string) (BuyBackToken.sol#83-86) is never used and should be remo
Reference: https: ffglthub com/crytic/slither/wiki/Detector-Documentation#dead-code

INFO:Detectors:
Pragma version~8.3.4 (BuyBackToken.sol#7) necessitates a version too recent to be trusted. Consider deploying with 8.6.12/8.
7.6
solc-08.8.4 is not recommended for deployment
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity
INFO:Detectors:
Low level call in Address.sendValue(address,uint256) (BuyBackToken.sol# 188):
{success) = recipient.call{value: amount}() 'BUvBaCk oken. 501* 06)
Low lev Al call in Address. functionCallwithvalue(address,bytes,uint256,string) (BuyBackToken.sol#128-145):
- {success,returndata) = target.call{value \914a1u93ldatal 'BUyBaCk oken.sol#131)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#low-level-calls
INFO:Detectors:
Function IUniswapV2Pair.DOMAIN_SEPARATOR() (BuyBackToken.sol#236) is not in mixedCase
Function IUniswapV2Pair.PERMIT_TYPEHASH() (BuyBackToken.sol#237) is not in mixedCase
Function IUniswapV2Pair.MINIMUM_LIQUIDITY() (BuyBackTecken.sol#253) is not in mixedCase
Function IUniswapV2Router®l.WETH{) (BuyBackT Dkan sol#273) is not in mixedCase
Parameter BuyBackToken.calculateTaxFee({uint256)._ amount {BuyBackToken.sol#374) is not in mixedCase
Parameter BuyBackToken.calculatel iquidityFee{uint256). amount (BuyBackToken. sol#SShl is not in mixedCase
Parameter BuyBackToken.setBuybackFee{uint256) vabackFee (BuyBackToken.sol#923) is not in mixedCase
Parameter BuyBackToken.setMarketingFee(uint2 ._marketingFee (BuyBackToken.sol#932) is not in mixedCase
Parameter BuyBackToken.setNumTokensSellToAddT DquuljltvIUIHTAEC}. minimumTokensBeforeSwap (BuyBackToken.sol#938) is not in m
ixedCase
Parameter BuyBackToken.setMarketingAddress{address)._marketingAddress (BuyBackToken.sol#946) is not in mixedCase
Parameter BuyBackToken.setSwapAndLiguifyEnabled{bool). enabled (BuyBackToken.sol#9508) is not in mixedCase
Parameter BuyBackToken.setBuyBackEnabled{bool)._enabled {BuyBackT Dkan s0l#955) is not in mixedCase
Parameter BuyBackToken.presale(bool). presale (BuyBackToken.sol# is not in mixedCase
variable BuyBackToken. taxFee (BuyBackToken.sol#433) is not in mixedCase
Variable BuyBackToken._maxTxAmount (BuyBackToken.sol#447) is not in mixedCase
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
INFO:Detectors:
Redundant expression "this (BuyBackToken.sol#15)" inContext (BuyBackToken.sol#9-18)
Reference: https://github.com/cryvtic/slither/wiki/Detector-Documentation#redundant-statements

INFO:Detectors:
Reentrancy in BuyBackToken._ transfer{address,address,uint256)
External calls:
- swapTokens(contractTokenBalance) (BuyBackToken.sol#
- recipient.transfer({amount) 'BUVBde oken.so
External calls sending eth:
- swapTokens{centractTokenBalance) ({BuyBackToken.sol#671)

6
1#

- recipient.transfe mount) (BuyBackToken. 501*97)
- buyBackTokens{balance.div({ }) (BuyBackToken.sol#679)
- uniswapV2Router.swapE actE_HFDF_Dken59upp3|tlngFeeDn_ransfer'okens{ualue: amount}{8,path,deadAddress,bleck
.timestamp.add(3 (BuyBackToken.sol#740-745)
State variables written after the call(s):
- _tokenTransfer(from,to,amount, takeFee) (BuyBackToken.sol#69€6
- _1'L-:|u1.:l1.‘cyF»=»= = _prev 'L-:vusL1.-:|u1.:l1.’c\uF»=»= {BuyBackT oken. sol#?u;-
- _liguidityFee = @ (BuyBackToken.sol#895)
_tokenTransfer(from,to,amount,takeFee) (BuyBackToken.sol#6
_prev DusL'LquuhtvFQQ = ligquidityFee (BuyBackToken. sols 200)
_tokenTransfer(from,to,amount,takeFee) (BuyBackT oken.sol#690)
siousTaxFee = ‘tu,<F»=»= {BuyBackToken.sol#889)
_tokenTransfer(from, to,amount, takeFee) |BUyBaCk_Dkeﬁ.SDl#
j[ajj|ASSIth15] rowned[address(this)].add(rLiquidity) (BuyBackToken.sol#869
d[sender] = 'Qj[SQHjQI] sublleaunt- (BuyBackToken. sol#785)
d[sender] = d[sender].sub(rAmount) (BuyBackToken. 74
dlsender] = _r d[sender].sub({rAmount) ({BuyBackToken.
med[recipient] rowned[recipient].add{ rTransferAmount) |BUVBaCk oken.sol#786)
ned[sender] = rowned[sender].sub(ramount) (BuyBackToken. sol#815)
d[recipient] _ro d[lrecipient].add(rTransferAmount) 'BUvBaCk oken.sol#8
dlrecipient] _r d[recipient].add(rTransferAmount) (BuyBackToken.sols#
d[recipient] rowned[recipient].add(rTransferAmount) (BuyBackToken.sol#8
_tokenT ransfnllflow to,amount, taknann (BuyBackToken.sol#690)
- rTotal = rTotal. ~5LJ|)I|F»=»=I (BuyBackToken.sol#824)
- _tokenTransfer(from,to,amount, taknFee; 'BUVBde oken.s0l#600
- _tFeeTotal = _tFeeT otal. add(tFee) (BuyBackToken. 501#645'
- _tokenTransfer(from,to,amount, takeFee) 'BUvBaCk oken.sol#690
- TDuth[adeQSSlthISl] = tOwned[address(this)].a dltquu1d1tun {BuyBackToken.sol#
- “towned[sender] = toOwned[sender].sub(tAmount) (BuyBackToken.sol#864)
- _tOwned[sender] = _tOwned[sender]. SUb'tHWDUht' 'BUVBde oken. s:l#clJ-

and confidential document. No part of this document should
narty without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

_tokenTransfer{from,to,amount,takeFee) (BuyBackToken.sol#6
plau'ousBbeackFaa bbeackFee (BuyBackToken.sol#891)
_tokenTransfer{from,to,amount,takeFee) (BuyBackToken.sol#690)
- previousMarketingFee = marketingFee (BuyBackToken.sol#a3
vent emitted after the call(s):
sapETHForTokens { amount,path) iBuyBack'oken.sol#?47)
- buyBackTokens{balance.div(108)) (BuyBackToken.sol#679)
FahSTQIISQHdQF,IQCIPIth tTransferAmount) 'BUvBaCk oken.sol#789)
- _tokenTransfer(from,to,amount,takeFee) {BuyBackToken.sol#690)
Transfer Isender,recipient,t_ransferﬂwount} {BuyBackToken.sol#799)
- _tokenTransfer(from,to,amount,takeFee) {BuyBackToken.sol#690)
Transfer({sender, recipient,tTransferAmount) iBUvBack oken.sol#209)
- _tokenTransfer(from,to,amount,takeFee) {BuyBackToken.sol#690)
- Transfer({sender,recipient,tTransferaAmount) iBUvBack oken.sol#828)
- _tokenTransfer(from,to,amount,takeFee) {BuyBackToken.sol#690)
Reentrancy in BuyBackToken. tFaHSTQIFIDﬁlajjIQSS address,uint256) (BuyBackToken.sol#563-567):
External calls:
- _transfer{sender, recipient,amount) {BuyBackToken.
- recipient.transfer{amount) 'BUvBaCk oken.s
External calls sending eth:
- _transfer{sender, recipient,amount) {BuyBackToken.
- recipient.transfer{amount) 'BUvBaCk oken.
- uniswapV2Router.swapExactET HFDF_DkQHSCUPPDItltheeDh rans ferTokens{value: amount}{0,path,deadAddress,block
.timestamp.add(300)) (BuyBackToken.sol#748-745)
State variables written after the call(s):
- _approve(sender,_msgSender(),_allowances[sender][_msgSender()].sub(amount,ERC208: transfer amount exceeds allowance
)} (BuyBackToken.sol#565)
_allowances[owner][spender] = amount {BuyBackToken.sol#649
Event emitted after the callis):
- Approval{owner,spender,amount) (BuyBackToken.sol#650)
- _approv Alsand9|, wsgcand9|ll, allowances[sender][_msgSender()].sub{amount,ERC20: transfer amount
{BuyBackToken.sol#5
https://github. CDWfCIvtlcfsllthQIf\lklfDQtQCtDF Documentation#reentrancy-vulnerabilities-4

INFO:Detectors:
Vvariable IUniswapV2Router@l.addLiquidity(address,address,uint256,uint256,uint256,uint256,address,uint256).amountADesired (Bu
yBackToken.sol#278) is too similar to IUniswapV2Router8l.addlLiguidity{address,address,uint256,uint256,uint256,uint256,addres
5,uint256) .amountBDes ired (BuyBackToken.sol#279)
Variable BuyBackToken._transferFromExcluded({address,address,uint256).rTransferAmount ({BuyBackToken.sol#3083) is too similar t
o BuyBackToken._transferFromExcluded{address,address,uint256).tTransferAmount (BuyBackToken.sol#303)
Variable BuyBackToken._transferStandard{address,address,uint256).rTransferAmount (BuyBackToken.sol#784) is too similar to Bu
yBackToken._transferstandard({address,address,uint256).tTransferAmount ({BuyBackToken.sol#734)
Variable BuyBackToken. transferFromExcluded{address,address,uint256).rTransferAmount (BuyBackToken.sol#803) is too similar t
o BuyBackToken._transferBothExcluded{address,address,uint256).tTransferAmount (BuyBackToken.sol#313)
Variable BuyBackToken.reflectionFromToken{uint256,bool).rTransferAmount (BuyBackToken.sol#611) is too similar to BuyBackToke
n._transferToExcluded{address,address,uint2 .tTransferAmount {BuyBackToken.sol#793)
Variable BuyBackToken._transferBothExcluded({address,address,uint256).rTransferAmount {BuyBackToken.sol#813) is too similar t
o BuyBackToken._transferBothExcluded{address,address,uint256).tTransferAmount (BuyBackToken.sol#313)
Variable BuyBackToken._transferToExcluded(address,address,uint256).rTransferAmount (BuyBackToken.sol#793) is too similar to
BuyBackToken._transferToExcluded(address,address,uint256).tTransferAmount (BuyBackToken.sol#793)
Variable BuyBack'oken._transferBothExcludejtajj|ess address,uint256).rTransferAmount (BuyBackToken.sol#313) is too similar t
o BuyBackToken._getValues(uint256).tTransferAmount iBuyBack'oken.sol#SEQ
Variable BuyBackToken._transferStandard{address,address,uint256).rTransferAmount (BuyBackToken.sol#784) is too similar to Bu
yBackToken._getTValues({uint256).tTransferAmount (BuyBackToken.sol#837)
Variable BuyBackToken._transferStandard{address,address,uint256).rTransferAmount (BuyBackToken.sol#784) is too similar to Bu
yBackToken._transferToExcluded{address,address,uint256).tTransferAmount (BuyBackToken.sol#793)
Variable BuyBackToken.reflectionFromToken{uint256,bool).rTransferAmount (BuyBackToken.sol#611) is too similar to BuyBackToke
n._getValues{uint256).tTransferAmount (BuyBackToken.sol#829
Variable BuyBackToken.reflectienFromToken{uint256,bool).rTransferAmount {BuyBackToken.sel#611) is teo similar te BuyBackToke
n._transferstandard{address,address,uint256).tTransferAmount {BuyBackToken. sol#784)
Variable BuyBackToken._getValues{uint256).rTransferAmount (BuyBackToken.sol#838) is too similar to BuyBackToken._transferBot
hExcluded{address,address,uint256).tTransferAmount (BuyBackToken.sol#813)
Variable BUvBack'oknn.reflectionFrow'oken[uintESE,bool\.r'ransferﬁwount {BuyBackToken.sol#611) is too similar to BuyBackToke
n._getTVvalues(uint256).tTransferAmount (BuyBackToken.sol#837)
Jallab1° BuyBackT oken. _transferBothExcluded(address,address,uint256). rTransferAmount (BuyBackToken.sol#813) is too similar t
o BuyBackT oken. _transTarFrowExcludediaddress,address,uintzSE}.t ransT9|Hwount {BuyBackToken.sol#303)
Variable BuyBackToken._transferToExcluded(address,address,uint256).rTransferAmount (BuyBackToken.sol#793) is too similar
BuyBackToken._transferFromExcluded({address,address,uint256).tTransferAmount {BuyBackToken.sol#3083)
Variable BuyBackToken._getRValues{uint256,uint256,uint256,uint256). rTransferAmount (BuyBackToken.sol#845) is too similar
BuyBackToken._getValues{uint256).tTransferAmount {BuyBackToken.sol#329
Variable BuyBackToken. gAtRbaIUASIu1nt;5t,u1nt;5t,u1nt;5t uint256).rTransferAmount {BuyBackToken.sol#845) is too similar
BuyBackT oken. _getTvalues{uint256).tTrans ferAmount 'BUvBaCk oken. 501#637}
Variable BuyBackToken._getRValues{uint256,uint256,uint256,uint256). rTransferAmount (BuyBackToken.sol#845) is too similar
BuyBackToken._transferToExcluded(address, ajj|ass uint256).tTransferAmount (BuyBackToken.sol#793)
Variable BuyBackToken. transfarctandaljfajj|ass ajj|ass uint;SCn r'ransferﬁwount {BuyBackToken.sol#784) is too similar to Bu
vBaCk_DkQH _getvalues(uint256).tTransferAmount 'BUvBaCk oken. 501*64

ariable BuyBackToken._transferToExcluded{address, address ,uint256 r'ransT9|Hwount {BuyBackToken.sol#793) is too similar
BUyBaCk oken. transferBothExcluded(address, ajj|ass u1nt;5tl tTransferAmount {BuyBackToken.sol#313)
Variable BuyBack'oken._transfer'oExcluded[address,address,uint;). rTransferAmount (BuyBackToken.sol#793) is too similar
BuyBackToken._transferStandard({address,address,uint256).tTransferAmount (BuyBackToken.sol#734)
Variable BuyBackToken._getRValues{uint256,uint256,uint256,uint256). rTransferAmount (BuyBackToken.sol#845) is too similar
BuyBackToken._transferStandard({address,address,uint256).tTransferAmount (BuyBackToken.sol#734)
Variable BuyBackToken. gAtRbalu95Iu1nt;..,u1nt;5t,u1nt4 6,uint256).rTransferAmount (BuyBackToken.sol#845) is too similar
BuyBackToken._transferBothExcluded(address,address,uint256).tTransferAmount (BuyBackToken.sol#813)
Variable BuyBackToken. t|ansf9|°tanda|jlajj|ass ajj|ass u1nt;5tl.r'ransf9|uwount {BuyBackToken. sol4a 4) is too similar to Bu
yBackToken. transferBothExcluded(address,a dIQSS u1nt;5t; tT ransT9|Hwount {BuyBackT oken.sol#813
Variable BuyBackToken. gAtRbalu95Iu1nt45C uint256,uint2 uint256).rTransferAmount {BuyBackT Dkan sol#845) is too similar to
BuyBackToken. _tFaHSTQIFIDWEXClUijlajjIQSS address ,uint256).tT ans ferAmount (BuyBackToken.sol#803)
Variable BuyBack'oken._transfer'oExcludediaddress,address,uint;EC;.r ransferAmount (BuyBackToken.sol#793) is too similar to
BuyBackToken._getValues({uint256).tTransferAmount (BuyBackToken.sol#829)
Variable BuyBackToken.reflectionFromToken{uint256,bool).rTransferAmount (BuyBackToken.sol#611) is too similar to BuyBackToke
n._transferFromExcluded(address,address,uint256).tTransferAmount (BuyBackToken.sol#8083)
Variable BuyBackToken._transferStandard{address,address,uint256).rTransferAmount (BuyBackToken.sol#784) is too similar to Bu
yBackToken._transferFromExcluded(address,address,uint256).tTransferAmount (BuyBackToken.sol#)
Variable BuyBack'oken._transfer'oExcludediaddress,address,uintzse}.r'ransT9|Hwount {BuyBackT oken. sol#793) is too similar to
BuyBackToken._getTValues(uint256).tTransferAmount (BuyBackToken.sol#837)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#variable-names-are-too-similar

a private and confidential document. No part of this document should
closed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solidity Static Analysis

BuyBackToken.sol

Security

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in

Address__functionCallWithValue(address, bytes,uint256,string): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 128:4:

Check-effects-interaction:

Potential violation of Checks-Effects-Interaction pattern in BuyBackToken.
(string,string,uint8,uint256,uiNt256,uint256,uint256,address): Could potentially lead to re-entrancy
vulnerability. Note: Modifiers are currently not considered by this static analysis.

Pos: 485:4:

Block timestamp: ¢

Use of "block timestamp": "block imestamp"” can be influenced by miners to a certain degree. That means that a
miner can "choose" the block imestamp, to a certain degree, to change the outcome of a transaction in the
mined block.

Block timestamp: ¢

Use of "block timestamp”: "block imestamp"” can be influenced by miners to a certain degree. That means that a
miner can "choose" the block timestamp, to a certain degree, to change the outcome of a transaction in the
mined block.

Low level calls: X

Use of "call": should be avoided whenever possible. It can lead to unexpected behavior if return value is not
handled properly. Please use Direct Calls via specifying the called contract's interface.
Pos: 131:50:

Gas & Economy

Gas costs: X

Gas requirement of function BuyBackToken lock is infinite: If the gas requirement of a function is higher than the
block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large areas of
storage (this includes clearing or copying arrays in storage)

Pos: 189:4:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Gas costs: 4

Gas requirement of function BuyBackToken includelnReward is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)

Pos: 632:4:

Gas costs: p ¢

Gas requirement of function BuyBackToken setBuybackFee is infinite: If the gas requirement of a function is
higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify
large areas of storage (this includes clearing or copying arrays in storage)

Pos: 923:4:

For loop over dynamic array:)4

Loops that do not have a fixed number of terations, for example, loops that depend on storage values, have to
be used carefully. Due to the block gas limit, transactions can only consume a certain amount of gas. The
number of iterations in a loop can grow beyond the block gas Limit which can cause the complete contract to be
stalled at a certain point. Additionally, using unbounded loops incurs in a lot of avoidable gas costs. Carefully
test how many items at maximum you can pass to such functions to make it successful.

Pos: 857:8:

ERC
ERC20:

ERC20 contract's "decimals" function should have "uint8" as return type
more
Pos: 227:4:

Miscellaneous

Constant/View/Pure functions:)4

IERC20 transfer(address,uint256) - Potentially should be constant/view/pure but is not. Note: Modifiers are
currently not considered by this static analysis.

Constant/View/Pure functions:)~ 4

BuyBackToken.reflectionFromToken (uint256,bool) : Is constant but potentially should not be. Note: Modifiers are
currently not considered by this static analysis.
Pos: 605:4:

Similar variable names: p 4

BuyBackToken_ _transferStandard(address,address,uint256) : Variables have very similar names "rAmount” and
"tAmount”. Note: Modifiers are currently not considered by this static analysis.
Pos: 784:9:

Similar variable names: p 4

BuyBackToken__transferStandard(address.address.uint256) : Variables have very similar names "rAmount” and
"tAmount”. Note: Modifiers are currently not considered by this static analysis.
Pos: 784:137:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Similar variable names: X

BuyBackToken _transferFromExcluded(address,address,uint256) : Variables have very similar names "_rOwned"
and "_tOwned". Note: Modifiers are currently not considered by this static analysis.
Pos: 804:23:

Similar variable names: 4

BuyBackToken._transferFromExcluded(address,address,uint256) : Variables have very similar names "_rOwned"
and "_tOwned". Note: Modifiers are currently not considered by this static analysis.
Pos: 805:8:

No return: 4

IUniswapV2Router02 removeliquidityETHSupportingFeeOnTransfer Tokens{address,uint256,uint256 uint256,address, ui
Defines a return type but never explicitly returns a value.
Pos: 367:4:

No return: X

IUniswapV2Router02 removeliquidityETHWithPermitSupportingFeeOnTransferTokens(address,uint256,uint256,uint2 54
Defines a return type but never explicitly returns a value.
Pos: 375:4:

Guard conditions: X

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e.g. invalid input or a failing external component.

Guard conditions: 4

Use "assert(x)" if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use
"require(x)" if x can be false, due to e g. invalid input or a failing external component.

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = 0 instead of 0.1 since the
result is an integer again. This does not hold for division of (only) Literal values since those yield rational
constants.

Pos: 61:16:

Data truncated:

Division of integer values yields an integer value again. That means e.g. 10/ 100 = O instead of 0.1 since the
result is an integer again. This does not hold for division of (only) literal values since those yield rational
constants.

Pos: 73:20:

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

Solhint Linter

BuyBackToken.sol

BuyBackToken.sol:7:1: Error: Compiler version

the r semver requirement

BRuyBackToken.sol:131:51: Error: Avoid using low level calls.
BuyBackToken.sol:137:17: Error: Avoid using inline assembly. It is
acceptable only in rare cases

BuyBackToken. : :5: Error: Explicitly mark visibility in function
(Set ignoreConstructors to true if using solidity >=0.7.0)
BuyBackToken.so0l:186:16: Error: Avoid to make time-based decisions in
your business logic

BuyBackToken.so0l:192: : Error: Avoid to make time-based decisions in
your business logic

BuyBackToken.so0l:198: : Error: Avoid to make time-based decisions
your busin ;
BuyBackToken. so
BuyBackToken. s
BuyBackToken. :
BuyBackToken . s«
BuyBackToken.sol:
but allowed no mo c 15

BuyBackToken.sol:455:5: Error: Explicitly mark visibility of state
BuyBackToken.so0l:485:5: Error: Explicitly mark visibility in function
(Set ignoreConstru s to true i1f using solidity >=0.7.0)
BuyBackToken.sol:487:28: Error: Use double quotes for string literals
BuyBackToken.sol:727:13: Error: Avoid to make time-based decisions in
your business logic

BuyBackToken.sol:744: : Error: Avoid to make time-based decisions
your business logic

BuyBackToken.sol:761:13: : Avoid to make time-based decisions in
your business logic

BuyBackToken.sol:933: : : Use double quotes for string literals
BuyBackToken.sol:979:32: r: Code contains empty blocks

3
9

6:
37 g
533

Error: Function name must be in mixedCa
Error: Function name must be in mixedCas
Error: Function name must be in mixedCase
Error: Function name must be in mixedCase
Error: Contract has 30 states declarations

(@]
~J W

)

22

227
4
r

ISNENTEN
D

Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

ther Authority

This is a private and confidential document. No part of this document should
be disclosed to third party without prior written permission of EtherAuthority.

Email: audit@EtherAuthority.io

